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Objective: Prior studies showed that
subjects with major depression have def-
icits in hippocampal-based verbal declar-
ative memory (e.g., recall of a paragraph)
and in hippocampal and prefrontal corti-
cal functioning and structure. The purpose
of the present study was to assess hippo-
campal and prefrontal functioning dur-
ing performance of a verbal declarative
memory task in subjects with midlife ma-
jor depression.

Method: Subjects with midlife major de-
pression (N=18) and healthy subjects (N=
9) underwent positron emission tomogra-

phy imaging during a control task and
verbal encoding of a paragraph.

Results: During the verbal memory en-
coding task the comparison subjects, but
not the subjects with depression, acti-
vated the right hippocampus and prefron-
tal cortex (anterior cingulate), as well as
the cuneus and cerebellum.

Conclusions: These results are consis-
tent with a failure of hippocampal and
anterior cingulate activation in depres-
sion, and they support the hypothesis of
deficits in hippocampal and anterior cin-
gulate functioning in depression.

(Am J Psychiatry 2004; 161:637–645)

Major depression is an important public health
problem that affects about 16% of the population at some
time in their lives (1). Depression is therefore the most
common disorder in this country that is likely to be associ-
ated with major morbidity as well as loss of economic
productivity (2). The risk of recurrence of depression in-
creases with repeated episodes. For instance, the risk of
having another depressive episode after a single episode is
about 50%, whereas with a past history of two or more ep-
isodes, the risk of having a recurrence of depression is
greater than 90%. One possible explanation for this pat-
tern of recurrence is that changes in the brain that are
caused by depressive episodes may lead to an increased
risk of recurrence. However, in spite of the importance of
depression for our society, little is known about changes in
the brain that may lead to depressive episodes and pro-
mote the recurrence of depression.

Animal models of depression, such as exposure to
chronic uncontrollable stress, demonstrate long-term al-
terations in neurophysiology (3–6). Glucocorticoids such
as cortisol, which are released during stress, were associ-
ated in some studies with damage to neurons (7–10) and
inhibition of neurogenesis (11, 12) in the hippocampus, a
brain area involved in learning and memory, with associ-
ated deficits in hippocampal-based memory functioning
(13, 14). Hypercortisolemia is a consistent finding in a
subgroup of subjects with severe depression (15–21) that
may be related in part to hippocampal dysfunction (22,
23). Subjects with depression also show deficits in perfor-
mance on hippocampal-based verbal declarative memory

tasks, including paragraph delayed recall and word list
learning (24–29), that may be mediated by the effects of
cortisol on the brain (30, 31). The hippocampus has im-
portant connections with the prefrontal cortex, which has
also been implicated in depression (32, 33). The areas of
the prefrontal cortex that have been implicated in depres-
sion include the dorsolateral prefrontal cortex (involved in
working memory) and medial prefrontal cortex (including
the anterior cingulate and orbitofrontal cortex).

Imaging studies have implicated the hippocampus and
prefrontal cortex in the mediation of depressive symp-
toms (34–36). Magnetic resonance imaging studies of
subjects with depression showed smaller hippocampal
volumes and other abnormalities in hippocampal struc-
ture in some studies (37–45), but not others (46, 47), and
smaller subgenual (anterior cingulate) cortical (48) and
orbitofrontal cortical (49, 50) volumes. Multiple studies of
blood flow and/or metabolism, using positron emission
tomography (PET) or single photon emission computed
tomography, in subjects with untreated depression have
shown low functioning in the left (51–54) and bilateral (55–
57) dorsolateral prefrontal cortex and in the medial pre-
frontal cortex/anterior cingulate/orbitofrontal cortex (48,
57–62). Induction of depressive symptoms with reduction
of brain serotonin (32) or norepinephrine (63) levels re-
sulted in decreased metabolism in the dorsolateral prefron-
tal cortex, orbitofrontal cortex, and thalamus. In summary,
the imaging findings in depression to date are consistent
with dysfunction of the hippocampus and prefrontal cor-
tex (specifically anterior cingulate) in depression. A gap in



638 Am J Psychiatry 161:4, April 2004

NEURAL CORRELATES OF MEMORY IN DEPRESSION

http://ajp.psychiatryonline.org

the literature has been the use of specific probes, such as
memory encoding, of hippocampal and frontal cortical
functioning in depression.

The PET studies performed to date in healthy human
subjects have not consistently shown activation of the
hippocampus during performance of verbal declarative
memory tasks. Some studies have shown activation with
tasks such as stem completion (64–66), although a larger
number of studies have not (67–75). Factors such as the
success of retrieval (69, 76–78) and emotional valence (74)
have been suggested as factors that could affect hippo-
campal activation. More consistent hippocampal ac-
tivations has been shown for encoding (as opposed to
retrieval) tasks (79–85). We have found hippocampal acti-
vation in normal subjects with a paragraph encoding task
(86). The paragraph encoding task involved encoding of
complex and integrated information that uses the in-
tegration functions hypothesized as a role for the hippo-
campus (87). This type of cognitive function is also clas-
sically impaired in patients with known hippocampal
lesions (88). Deficits in paragraph recall have been associ-
ated with depression. We therefore used paragraph en-
coding as the verbal declarative memory task in the cur-
rent study, whose purpose was to use a verbal declarative
memory encoding task as a probe of hippocampal and

anterior cingulate functioning in subjects with midlife
depression. We hypothesized that subjects with depres-
sion would show less activation of the hippocampus and
anterior cingulate during the declarative memory task
than would healthy comparison subjects.

Method

Subjects

Twenty-seven men and women participated in the study, in-
cluding nine subjects without a history of major depression and
18 with midlife depression. The subjects included six healthy
women and three healthy men and 13 women and five men with
major depression. The project was approved by a local human
investigation committee. All subjects were recruited through
newspaper advertisement. The diagnosis of major depression
was established with the Structured Clinical Interview for DSM-IV
(SCID) (89). The subjects were also evaluated with the Hamilton
Depression Rating Scale, a validated instrument for measure-
ment of depression severity (90). All subjects gave written in-
formed consent for participation, were free of major medical ill-
ness on the basis of history and physical examination, laboratory
testing, and electrocardiogram, were not actively abusing sub-
stances or alcohol (in the past 6 months), and were free of all
medications for at least 4 weeks before the study. The subjects did
not stop taking medication for the purpose of participating in the
study. Subjects with a serious medical or neurological illness, an
organic mental disorder or comorbid psychotic disorder or post-

TABLE 1. Brain Areas Showing Increases and Decreases in Blood Flow During a Verbal Memory Encoding Task in Healthy
Subjects (N=9)a

Talairach Coordinates

Direction of Change and Brain Region z Score x y z Brodmann’s Areas
Increased blood flow

Left precentral gyrus 5.52b –44 –6 30 6
Anterior cingulate 5.47 –26 42 4 24, 32
Left middle/inferior frontal gyrus 5.18 –32 32 40 8, 9, 44
Left hippocampal region 4.16b –44 –10 –16
Right hippocampus 2.78b 28 –14 –10
Cerebellum 4.16b –18 –62 –12
Left lingual gyrus 4.11 –24 –62 0 19
Precuneus 4.05b –6 –80 48 7
Cuneus 3.79 10 –94 32 18
Visual association cortex 3.54 20 –88 42 19
Right precentral gyrus (motor) 3.68b 56 –6 32 6

3.39 60 –18 30
3.15 60 2 22

Decreased blood flow
Cerebellum 5.97b 36 –40 –42

3.79b –8 –48 –36
3.48 –22 –58 –38
2.88 0 –50 –20

Right fusiform gyrus 2.65 56 –46 –20 36
Left fusiform gyrus 3.75b –34 –28 –18 20
Right inferior frontal gyrus 4.93b 34 24 4 45
Right middle frontal gyrus 3.87b 18 58 0 10

3.50 16 60 8
3.26 28 56 20

Anterior frontal gyrus 3.71b 0 36 40 8, 9
3.62 –6 30 54
3.31 –14 52 32

Right superior/middle temporal gyrus 3.36b 48 10 –40 38
2.63 38 14 –36

Right precuneus 3.50b 14 –62 34 7
a Increases and decreases were defined as differences between the control and verbal encoding tasks that resulted in z scores of ≥2.58

(p<0.005).
b Area represented showed greatest activation in a contingent group of voxels.
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traumatic stress disorder (PTSD), a history of childhood trauma
as measured with the Early Trauma Inventory (91), a current or
past history of alcohol or substance abuse or dependence, re-
tained metal, or a history of head trauma, loss of consciousness,
cerebral infectious disease, or dyslexia were excluded. There was
no difference in age between the healthy subjects (mean=38
years, SD=2) and the subjects with major depression (mean=43
years, SD=2) (t=1.03, df=25, p=0.31). There was also no difference
in the number of years of education between the healthy subjects
(mean=16, SD=2) and the subjects with depression (mean=16,
SD=2) (t=0.76, df=25, p=0.45). All subjects were right-handed.

All of the depressed subjects had current and lifetime unipolar
major depression. The current level of depressive symptoms as
measured with the Hamilton depression scale was 33 (SD=9) in
the depressed group. Three of the subjects (17%) had depression
with melancholia; none had atypical depression. Two (11%) of the
18 depressed subjects fulfilled the criteria for a lifetime history of
dysthymia, and one (6%) had a current history of dysthymia
based on the SCID. Five (28%) of the 18 had new-onset major de-
pression; the rest (72%) had recurrent major depression. The
comparison subjects did not have a history of psychiatric disor-
der as measured with the SCID.

PET Scanning Methods

Each subject was scanned on a single day in conjunction with
verbal memory tasks. The subjects underwent PET scanning with
four activations (two control tasks and two memory encoding
tasks). Consecutive PET scans were separated by 10 minutes.
H2[15O] was prepared on-site in a cyclotron. An intravenous infu-
sion of normal saline was started to permit the bolus injection of
H2[15O]. Each subject was scanned with his or her eyes open in a
dimly lit room. The subject was placed in the scanner with the
head held in a head holder to minimize motion. The head was po-
sitioned with the canthomeatal line parallel to the external laser
light. After positioning within the camera gantry, a transmission
scan of the head was obtained by using an external 67Ga/68Ge rod
source. This data were used to correct emission data from attenu-
ation due to overlying bone and soft tissue. The subject received a

30-mCi intravenous bolus of H2[15O] for each of the four scans.
Each condition lasted 60 seconds, with the PET scan acquisition
beginning at the initiation of the condition and ending after 60
seconds.

The subjects were initially instructed that this was a test of how
“the brain processes information” and were not told that it was a
test of memory. Before the first two scans they were read a list of
10 pairs of words for one minute and asked to count the number
of times they heard a word that contained the letter “D” (a control
condition providing poorly encoded words). They were then read
a second list of 10 different word pairs for 1 minute and again
asked to count the number of times they heard the letter “D.”
These words were neutral in content and were all concrete nouns
in common usage in the English language. Methods related to the
development of these words, including ratings of emotional con-
tent, were previously published (74). The subjects then under-
went PET imaging for scan 1 while they were asked to remember
the poorly encoded words. This was repeated for scan 2 for the
second list. Before scan 3, the subjects were told that a paragraph
would be read to them during the next scan, and they were asked
to remember it and to form an image of the scene in their mind
during the scan (deep encoding). The paragraph read to them
during scan 3 contained neutral content. Five minutes later the
subjects were asked to remember the paragraph, and the accu-
racy of their recall was scored. This procedure was repeated for
scan 4.

Image Analysis

The images were reconstructed and analyzed on a SunSparc
Workstation by using statistical parametric mapping (SPM 96).
The images for each patient set were realigned to the first scan of
the study session. The mean concentration of radioactivity in
each scan was calculated as the area-weighted sum of the con-
centration of each slice and adjusted to a nominal value of 50 ml/
minute per 100 g. The data were transformed into a common an-
atomical space by using the Montreal Neurological Institute tem-
plate (92) and were smoothed with a three-dimensional Gaussian
filter to 16 mm full-width at half maximum. Regional blood flow,

TABLE 2. Brain Areas Showing Increases and Decreases in Blood Flow During a Verbal Memory Encoding Task in Patients
With Depression (N=18)a

Talairach Coordinates

Direction of Change and Brain Region z Score x y z Brodmann’s Areas
Increased blood flow

Right precentral gyrus 4.31b 62 –4 34 6
Right middle frontal gyrus 3.87 46 28 38 9

3.59 60 22 18
Right superior frontal gyrus 3.23b 16 14 52 8
Left precentral gyrus 4.31b –40 –10 36 6

4.31 –42 –8 26
3.41 –14 –4 54

Right visual association cortex 3.67b 40 –68 4 19
Right posterior cingulate 2.69 18 6 36 24

Decreased blood flow
Right caudate 5.77b 12 14 8

5.32 –4 44 2
4.94 26 10 –22

Right middle temporal gyrus 4.30b 62 –30 –10 21
Cerebellum 3.93 26 –40 –28

3.43 52 –40 –26
3.13b –18 –78 –36

Left middle temporal gyrus 3.23b –48 –60 8 37
Right inferior frontal gyrus 3.77b 34 8 26 44
Right inferior parietal lobule 3.41b 48 –42 46 40
Left hippocampus 3.21b –22 –42 –2

a Increases and decreases were defined as differences between the control and verbal encoding tasks that resulted in z scores of ≥2.58
(p<0.005).

b Area represented showed greatest activation in a contingent group of voxels.
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with global blood flow as a covariate, was compared in the control
and deep encoding conditions in the subjects with depression
and the comparison subjects. The interaction between group
(depressed versus comparison subjects) and condition (control
condition versus deep paragraph encoding) was also examined.
Repeated measures of cerebral blood flow at rest have shown vari-
ability of 2.3% (SD=8.7%) within subjects (93) and 4.5% from our
site (94). Statistical analyses yielded image data sets in which the
values assigned to individual voxels corresponded to t statistic
values (95, 96). The statistical images were displayed with values
of z score units. A threshold z score of 2.58 (p<0.005) was used to
define areas of activation within regions included in our hypoth-
esis. The threshold z score corresponds to a p value of <0.001 for a
one-tailed t test. Since the current study used an a priori hypoth-
esis, this justifies the use of a one-tailed test. Locations of areas of
activation were identified as the distance from the anterior com-
missure in millimeters, with x, y, and z coordinates, based on a
standard stereotaxic atlas (97).

The relationships between behavioral and brain measures were
assessed by using Spearman correlations. Analysis of variance was
used to assess the difference in behavioral measures and memory
performance between subjects with and without depression.

Results

There were no significant differences between the sub-
jects with depression and the comparison subjects in
paragraph recall scores for either the first strongly en-
coded paragraph (mean=24, SD=7, versus mean=28, SD=
8; t=1.43, df=24, p=0.17) or the second one (mean=26, SD=
9, versus mean=30, SD=6; t=1.05, df=25, p=0.31). There
were also no differences in recall of the weakly encoded
memory material.

Memory encoding of a paragraph by the healthy sub-
jects resulted in increased blood flow in the hippocampus,
anterior cingulate, cerebellum, lingual gyrus, precuneus,
cuneus, visual association cortex, motor cortex, and infe-
rior/middle frontal gyrus. Paragraph encoding resulted in
a decrease in blood flow in the right middle/inferior fron-
tal gyrus, anteromedial prefrontal cortex, bilateral fusi-
form gyrus, cerebellum, and right middle temporal gyrus
(Table 1). Memory encoding by the subjects with depres-
sion resulted in an increase in blood flow in the bilateral
precentral gyrus (motor cortex), right middle and superior
frontal gyrus, right visual association cortex, and right
posterior cingulate (Table 2). Memory encoding resulted
in a decrease in blood flow in the depressed subjects in the
right caudate, bilateral middle temporal gyrus, cerebel-
lum, right inferior frontal gyrus, right inferior parietal
lobule, and left hippocampus. Comparison of the healthy
subjects with the depressed subjects showed that the
healthy subjects had greater increases in blood flow dur-
ing memory encoding in the cerebellum, bilateral anterior
cingulate, right hippocampus and amygdala, left hippo-
campal region, right cuneus, left visual association cortex,
left middle temporal gyrus, right superior temporal gyrus,
and right inferior frontal gyrus (Table 3, Figure 1, Figure 2).
The healthy subjects showed greater decreases in blood
flow with memory encoding in the right middle and infe-
rior frontal gyrus, cerebellum, and left inferior parietal
lobule (Table 3, Figure 3).

TABLE 3. Areas Showing Greater Increases and Decreases in Blood Flow During a Verbal Memory Encoding Task in Healthy
Subjects (N=9) Than in Patients With Depression (N=18)a

Talairach Coordinates

Direction of Change and Brain Region z Score x y z Brodmann’s Areas
Increased blood flow

Cerebellum 4.46b –18 –62 –12
Right anterior cingulate 4.02b 12 26 0 24, 32

3.81 14 36 –8
3.61 24 44 10

Left anterior cingulate 3.91b –28 42 0 24, 32
3.40 –20 26 18
3.40 –38 26 18

Right hippocampus 3.77 26 –14 –10
Right amygdala 3.27 30 –2 –24
Left hippocampal region 2.58 –40 –8 –16
Left visual association cortex/cuneus 3.38b –12 –100 4 17, 18

3.33 –12 –98 12
Right visual cortex 2.60 12 –102 0 17, 18
Left middle temporal gyrus 3.38b –46 –12 –14 21
Right superior temporal gyrus 3.34b 40 –40 18 22
Right inferior frontal gyrus 3.32b 30 10 26 44

Decreased blood flow
Right middle frontal gyrus 3.69b 44 28 38 8, 9
Right inferior frontal gyrus 3.34 58 22 20 45, 46

2.60b 38 24 8 46
Cerebellum 3.16b 38 –40 –48

3.05 22 –54 –40
2.81 24 –34 –50
2.76 0 –50 –22

Left inferior parietal lobule 3.12b –18 –52 58 40
a Increases and decreases were defined as differences between the control and verbal encoding tasks that resulted in z scores of ≥2.58

(p<0.005).
b Area represented showed greatest activation in a contingent group of voxels.
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There was no correlation between hippocampal activa-
tion and several demographic factors, including age and
sex, in the depressed or nondepressed subjects. There was
no relationship between level of depression as measured
by the Hamilton depression scale and hippocampal ac-
tivation in the depressed subjects. There were also no
differences in hippocampal activation between the sub-
jects with new-onset depression and those with recurrent
depression.

Discussion

Memory encoding resulted in greater hippocampal and
anterior cingulate activation in healthy subjects than in
subjects with currently untreated midlife depression.
These findings are consistent with the hypothesis of hip-
pocampal and anterior cingulate dysfunction in depres-
sion. The use of a verbal memory encoding task as a spe-
cific probe of hippocampal and prefrontal functioning
provides evidence that converges with findings from a
number of structural and functional baseline imaging
studies that suggest dysfunction in the hippocampus and
prefrontal cortex in depression.

The network of brain regions activated by memory en-
coding differed between the subjects with depression and
the healthy subjects. For example, there was greater acti-
vation of the right middle and inferior frontal gyri in the
subjects with depression. These subjects may have relied
on these areas to a greater degree because of dysfunction
in the hippocampus and anterior cingulate. The right infe-
rior frontal gyrus has been hypothesized to be involved in
the effort of retrieval, but not necessarily in successful re-
trieval. It is of interest that the depressed subjects relied
more on the right middle frontal gyrus while the nonde-
pressed subjects used the left middle frontal gyrus in en-
coding. There were no differences in performance of the
paragraph recall task, however, between the subjects with
and without depression. This suggests that the differences
in brain activation were not primarily related to differ-
ences in performance.

Memory encoding in the healthy subjects involved re-
cruitment of an extended network of brain regions similar
to those shown by prior imaging studies of the neural cor-
relates of memory. Brain regions involved in memory en-
coding by the healthy subjects in the current study that
have been found to be activated in prior studies of the

FIGURE 1. Statistical Parametric Map Overlaid on an MRI Template Showing Brain Areas of Greater Increases in Blood Flow
During a Verbal Memory Encoding Task in Healthy Subjects (N=9) Than in Subjects With Depression (N=18)a

a Areas of greater increases in blood flow included the hippocampus (x=26, y=–14, z=–10) and anterior cingulate (x=12, y=26, z=0) (p<0.001).
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FIGURE 2. Increased Right Hippocampal Blood Flow During
a Verbal Memory Encoding Task in Healthy Subjects (N=9)
and Subjects With Depression (N=18)a

a Individual symbols represent the difference between average blood
flow in the right hippocampus (normalized to global blood flow)
(x=26, y=–14, z=–10) during the verbal memory encoding task and
blood flow during a control task in individual subjects with and
without depression. There was an increase in mean hippocampal
blood flow in the healthy subjects but not the subjects with depres-
sion (two-tailed t test comparing the delta of blood flow with mem-
ory versus the control task in patients versus comparison subjects
(t=6.52, df=25, p<0.0001).
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neural correlates of declarative memory include the pre-
cuneus (72, 73, 98), cuneus (65, 74), left inferior/middle
frontal gyrus (65, 69, 70, 72, 73), and precentral gyrus (70,
73, 74). The inferior/middle frontal gyrus portion of the
prefrontal cortex is felt to be involved in verbal memory
encoding and/or retrieval (99), as well as verbal processing
(100, 101) and working memory (102, 103). In prior PET
studies of normal subjects, the anterior cingulate (65, 68–
70, 72, 74, 98, 99) has been consistently associated with
verbal memory retrieval, while some studies (but not all)
showed hippocampal activation (65, 67, 76). The de-
pressed subjects in this study shared with the healthy sub-
jects recruitment of the visual association cortex.

We did not find a correlation between hippocampal ac-
tivation and memory performance in the patients with de-
pression. This is in contrast to the findings in a study using
a word generation task in patients with geriatric depres-
sion (61), which showed hippocampal (and anterior cin-
gulate) deficits that correlated with deficits in baseline
memory scores (outside of the scanner) derived from the
Dementia Rating Scale. That study had several important
differences from the current one, including the age of the
study group, differences in the cognitive task, and the fact
that memory ratings did not correspond to the task per-
formed during the imaging study.

There are several possible explanations for the findings
of the current study. Hypercortisolemia associated with
stress and/or depression may lead to dysfunction of the
hippocampus during the performance of verbal declara-
tive memory tasks by subjects with depression. We did not
obtain blood samples to test this hypothesis, however, and
our prior studies did not indicate a correlation between
hippocampal volume and a single plasma cortisol mea-
surement (37, 104). Other factors linked to stress, such as
decreased brain-derived neurotrophic factor, may lead to
hippocampal dysfunction. Stress may independently lead
to neurochemical alterations resulting in hippocampal
dysfunction and depression, or stress may cause hippo-
campal dysfunction, which then leads to both the emo-

tional dysregulation and cognitive disturbances seen in
depression. It is also possible that altered hippocampal
function from birth is a risk factor for the development of
depression, rather than a result of stress and/or depressive
episodes. With regard to prefrontal functioning, there is
emerging evidence that early life experience may influ-
ence neurogenesis within the prefrontal cortex. Alterna-
tively, a circuit within the hippocampus may be affected in
depression, or alterations in functioning from birth may
account for changes in functioning in this area among
subjects with depression.

There are several limitations of the current study that
should be taken into consideration. The reason for having
a fixed order of tasks, with the control tasks followed by the
deep encoding tasks, was that once the subjects were
aware that this was a test of memory they would remem-
ber words in spite of the instructions. However, this design
may have led to order effects (e.g., subjects doing better as
they went along). Also, the control task was not well
matched to the encoding task. However, since the same
protocol was applied to the depressed and nondepressed
subjects, this should not explain differences across patient
groups. The statistical parametric mapping data analysis
technique has inherent limitations. For instance, images
are transformed to a common anatomical space. Since in-
dividual subjects have different brain sizes, this may affect
the final results. Also, the assessment of multiple regions
of the brain may lead to false results related to multiple
comparisons.

The proposed model of an abnormal circuit involving
the hippocampus and prefrontal cortex is similar to that
proposed for other disorders, including schizophrenia and
PTSD. A number of studies have shown abnormalities in
structure and functioning in the hippocampus and the
functionally connected medial prefrontal cortex in schizo-
phrenia (105–107). These findings raise the question of the
specificity of circuit abnormalities in depression versus
other psychiatric disorders. Dysfunction in these areas
may represent the neural correlate of specific aspects of

FIGURE 3. Statistical Parametric Map Overlaid on an MRI Template Showing Brain Areas of Greater Decreases in Blood
Flow During a Verbal Memory Encoding Task in Healthy Subjects (N=9) Than in Subjects With Depression (N=18)a

a Areas of greater decreases in blood flow included the right middle and inferior frontal gyri (p<0.001).
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the disorder, such as hippocampal dysfunction that medi-
ates cognitive abnormalities common to, for instance,
both depression and schizophrenia, while abnormalities
of the medial prefrontal cortex underlie both attentional
deficits and affective blunting, which are common to both
disorders. At this time it is not clear why similar circuits
should subsume psychiatric disorders that are clearly dif-
ferent. One possibility is that although the neuroanatomi-
cal substrates may be similar, there may be differences in
neurochemical functioning within the circuits that medi-
ate differential expression of the disorders.
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